Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.
نویسندگان
چکیده
The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.
منابع مشابه
Historic Mortars: Characterization and Durability. New Tendencies for Research
A mortar is a material resulting of the intimate mixture of sand grains, a binder (lime, cement, etc.) and water. The properties and characteristic of the mortars mainly depend on the nature of the binder component. That is the reason for which, its evolution with time has been very related to the development of artificial cementitious materials. So, with the consolidation of the Roman civiliza...
متن کاملDisassembly Properties of Cementitious Finish Joints Using an Induction Heating Method
Efficient maintenance and upgrading of a building during its lifecycle are difficult because a cementitious finish uses materials and parts with low disassembly properties. Additionally, the reuse and recycling processes during building demolition also present numerous problems from the perspective of environmental technology. In this study, an induction heating (IH) method was used to disassem...
متن کاملEffectofMetakaolin and Nano-SiO2onshort and Long-term shrinkageofself-compactingcement sandmortar
The use of cementitious products isincreasing in the world,Thusreplacement part of cement with pozzolanic materials reduced energy consumption and preserve natural resources and the environment and also improve the mechanical properties and durability of the cement mortar.Furthermore Nano technology has promptedto tremendous developments in technology of building materials in recent yearsso use...
متن کاملChloride diffusion in partially saturated cementitious material
The paper proposes a combined application of composite theory and Powers’ model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg/m rapid-hardening Portland cement, w/c = 0.5, maturity minimum 6 months) stored at 65% and 85% RH,...
متن کاملExperimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites
Due to their remarkable mechanical properties, multiwall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 52 شماره
صفحات -
تاریخ انتشار 2014